

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package

Preliminary Data Sheet

v. 11 - 22 October 1999

ATF-38143

Features

- Low noise figure
- Excellent uniformity in product specifications
- Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70)
- Tape-and-Reel Packaging Option Available

Specifications

1.9 GHz; 2V, 10mA (Typ.)

- 0.4 dB Noise Figure
- 16 dB Associated Gain
- 12.0 dBm Output Power at 1 dB gain compression
- 22.0 dBm Output 3rd Order Intercept

Applications

- Low Noise Amplifier for cellular/PCS handsets
- LNA for WLAN, WLL/RLL, LEO and MMDS applications
- General purpose discrete PHEMT for other ultra low noise application

Surface Mount Package SOT-343

Pin Connections and Package Marking

Note: Top View. Package marking provides orientation and identification. "8P" = Device Code "X" = Date code character. A new character is assigned for each month and year.

PRELIMINARY DATA

This preliminary data is provided to assist you in the evaluation of product(s) currently under development and targeted for market release shortly. Until Hewlett-Packard releases this product for general sales, HP reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at any time.

Description

Hewlett Packard's ATF-38143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package.

Based on its featured performance, ATF-38143 is suitable for applications in cellular and PCS base stations, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range.

Absolute Maximum Ratings [1]

Symbol	Parameter	Units	Absolute Maximum
V _{DS}	Drain - Source Voltage [2]	V	4.5
V _{GS}	Gate - Source Voltage	V	-4
V _{GD}	Gate Drain Voltage	V	-4
I _{DS}	Drain Current	mA	I_{dss}
P _{diss}	Total Power Dissipation ²	mW	580
P. in max.	RF Input Power	dBm	20
^Т СН	Channel Temperature	°C	160
T _{STG}	Storage Temperature	°C	-65 to 160
θ_{jc}	Thermal Resistance ³	°C/W	165

Notes:

- [1] Operation of this device above any one of these parameters may cause permanent damage.
- [2] Source lead temperature is 25° C. Derate 6 mW/°C for T_L > 64°C.
- [3] Thermal resistance measured using 150°C Liquid Crystal Measurement method.

ATF-38143 Product Consistency Distribution Charts

Note:

Distribution data sample size is 450 samples taken from 6 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. Measurements made on production test board. This circuit represents a trade-off between an optimum noise match and a realizable match based on production test requirements. Circuit losses have been de-embedded from actual measurements.

PRELIMINARY DATA

Electrical Specifications for ATF-38143

 $T_A = 25$ °C, RF parameters measured in a test circuit for a typical device

Symbol	Parameter and Test Condition		Units	Min.	Typ. ²	Max.
Idss ¹	Saturarated Drain Current Vd	mA	90	118	145	
Vp^1	Pinch-off Voltage Vds=1.5V,	Ids=10% of Idss	V	-0.65	-0.5	-0.35
Id	Quiescent Bias Current Vgs=	Quiescent Bias Current Vgs=-0.54 Vds=2V				-
Gm^1	Transconductance Vds=1.5V,	Gm = Idss/Vp	mmho	180	230	-
Igdo	Gate to Drain Leakage Curren	t Vgd=-5V	μΑ			500
Igss	Gate Leakage Current Vgd = V	Vgs = -4V	μΑ	-	30	300
NF	Noise Figure f=2 GHz	Vds=2V, Ids=5mA Vds=2V, Ids=10mA Vds=2V, Ids=20mA	dB		0.6 0.4 0.3	0.85
	f=900 MHz	Vds=2V, Ids=5mA Vds=2V, Ids=10mA Vds=2V, Ids=20mA	dB		0.6 0.4 0.3	
Ga	Associated Gain f=2 GHz	Vds=2V, Ids=5mA Vds=2V, Ids=10mA Vds=2V, Ids=20mA	dB	15	15.3 16.0 17.0	18
	f=900 MHz	Vds=2V, Ids=5mA Vds=2V, Ids=10mA Vds=2V, Ids=20mA	dB		17.0 19.0 20.5	
OIP3	Output 3 rd Order Intercept Point ³ f=2 GHz	Vds=2V, Ids=10mA	dBm	18.5	22.0	
	f=900 MHz	Vds=2V, Ids=10mA	dBm		22.0	
IIP3	Input 3 rd Order Intercept Points f=2GHz	Vds=2V, Ids=10mA	dBm		6.0	
	f=900MHz	Vds=2V, Ids=10mA	dBm		3.0	
P1dB	1dB Compressed Output Power ³ f=2 GHz	Vds=2V, Ids=10mA	dBm		12.0	
	f=900 MHz	Vds=2V, Ids=10mA	dBm		12.0	

Notes:

1. Guaranteed at wafer probe level

2. Typical value determined from a sample size of 450 parts from 6 wafers.

3. Measurements obtained using production test board described in figure 5.

Figure 5 Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match, maximum gain match, and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements.

PRELIMINARY DATA

ATF-38143 Typical Performance Curves

Notes:

- 1. Measurements made on fixed tuned production test board that was tuned for optimum gain match with reasonable noise figure at 2V, 10mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match, and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements.
- 2. P1dB measurements are performed with passive biasing. Quiescent drain current, I_{DSQ} , is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of I_{DSQ} the device is running closer to class B as power output approaches P1 dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.

PRELIMINARY DATA

ATF-38143 Typical Performance Curves

Note:

1. P1dB measurements are performed with passive biasing. Quiescent drain current, I_{DSQ} , is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of I_{DSQ} the device is running closer to class B as power output approaches P1 dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.

PRELIMINARY DATA

ATF-38143 Typical	Scattering	Parameters,	$V_{DS} = 2V$,	$I_{DS} = 5mA$
-------------------	------------	-------------	-----------------	----------------

Frequency	s	11		s21			s12		s22		MSG/MAG
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	dB
0.5	0.98	-25	14.47	5.289	160	-26.56	0.047	73	0.67	-21	20.51
0.8	0.95	-40	14.19	5.122	148	-22.85	0.072	63	0.65	-32	18.52
1.0	0.93	-51	14.00	5.010	140	-21.21	0.087	56	0.62	-40	17.60
1.5	0.87	-75	13.28	4.613	122	-18.49	0.119	41	0.56	-58	15.88
1.8	0.82	-89	12.79	4.362	111	-17.52	0.133	33	0.52	-69	15.16
2.0	0.80	-98	12.45	4.192	105	-16.95	0.142	28	0.50	-77	14.70
2.5	0.75	-120	11.48	3.751	89	-16.19	0.155	16	0.44	-94	13.84
3.0	0.71	-139	10.48	3.342	76	-15.70	0.164	5	0.40	-110	13.09
4.0	0.67	-170	8.68	2.716	52	-15.44	0.169	-12	0.34	-138	12.06
5.0	0.66	162	7.24	2.302	30	-15.44	0.169	-27	0.31	-162	11.34
6.0	0.66	137	6.02	2.000	10	-15.60	0.166	-41	0.29	173	10.81
7.0	0.68	113	4.78	1.734	-10	-15.92	0.160	-55	0.28	146	10.35
8.0	0.70	92	3.51	1.498	-29	-16.59	0.148	-67	0.29	121	8.89
9.0	0.72	73	2.39	1.316	47	-17.20	0.138	-77	0.32	103	7.33
10.0	0.74	56	1.51	1.190	-64	-17.46	0.134	-86	0.37	87	6.93
11.0	0.78	39	0.44	1.052	-83	-17.86	0.128	-97	0.42	66	6.66
12.0	0.82	23	-0.73	0.919	-100	-18.42	0.120	-106	0.47	47	6.22
13.0	0.83	10	-2.17	0.779	-117	-19.33	0.108	-115	0.52	28	4.93
14.0	0.85	-2	-3.54	0.665	-132	-20.00	0.100	-121	0.57	11	3.95
15.0	0.87	-16	-4.84	0.573	-147	-20.45	0.095	-129	0.63	0	3.58
16.0	0.88	-30	-6.16	0.492	-161	-20.82	0.091	-136	0.68	-12	2.90
17.0	0.88	-39	-7.51	0.421	-176	-21.11	0.088	-145	0.71	-26	1.98
18.0	0.89	-50	-9.07	0.352	173	-21.83	0.081	-151	0.75	-37	1.24

ATF-38143 Typical Noise Parameters

$V_{DS} = 2V, I_{DS}$	s = 5mA				
Frequency	Fmin	Gamn	na Opt	Rn/50	Ga
GHz	dB	Mag	Ang		dB
0.5	0.18	0.69	14	0.25	23.0
0.9	0.21	0.69	26	0.23	20.5
1.0	0.22	0.68	27	0.22	19.8
1.5	0.26	0.68	44	0.20	17.1
1.8	0.29	0.66	59	0.17	16.0
2.0	0.32	0.65	61	0.17	15.4
2.5	0.40	0.62	80	0.14	14.3
3.0	0.48	0.59	98	0.11	13.1
4.0	0.60	0.50	127	0.08	10.8
5.0	0.70	0.49	163	0.04	9.8
6.0	0.84	0.51	-169	0.04	8.7
7.0	0.96	0.53	-140	0.09	7.7
8.0	1.12	0.54	-111	0.20	6.8
9.0	1.27	0.59	-88	0.36	6.1
10.0	1.38	0.62	-68	0.60	6.0

Note:

- 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedance using an ATN NP5 test system. From these measurements a true Fmin is calculated.. Refer to the noise parameter application section for more information.
- 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.

PRELIMINARY DATA

ATF-38143 Typical	Scattering	Parameters,	$V_{DS} = 2V, I_{DS} =$	10mA
-------------------	------------	-------------	-------------------------	------

Frequency	s	11		s21			s12		S	22	MSG/MAG
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	dB
0.5	0.97	-29	17.41	7.423	158	-27.74	0.041	72	0.53	-26	22.58
0.8	0.93	-47	17.00	7.081	145	-24.01	0.063	61	0.51	-40	20.51
1.0	0.91	-58	16.69	6.834	136	-22.50	0.075	55	0.48	-50	19.60
1.5	0.83	-85	15.69	6.086	117	-20.00	0.100	40	0.42	-72	17.84
1.8	0.78	-100	15.02	5.634	107	-19.17	0.110	33	0.39	-85	17.09
2.0	0.76	-109	14.57	5.350	100	-18.71	0.116	28	0.37	-94	16.64
2.5	0.71	-131	13.38	4.665	86	-17.99	0.126	18	0.33	-114	15.68
3.0	0.68	-150	12.22	4.083	73	-17.65	0.131	9	0.31	-132	14.94
4.0	0.65	180	10.24	3.251	50	-17.27	0.137	-5	0.28	-163	13.75
5.0	0.65	153	8.68	2.716	30	-17.08	0.140	-18	0.28	172	12.88
6.0	0.66	129	7.35	2.330	11	-16.95	0.142	-30	0.28	147	12.15
7.0	0.68	107	6.03	2.003	-9	-16.95	0.142	-42	0.29	122	11.49
8.0	0.71	87	4.72	1.722	-27	-17.27	0.137	-53	0.32	99	9.09
9.0	0.73	68	3.57	1.509	-43	-17.46	0.134	-62	0.35	83	7.94
10.0	0.75	53	2.71	1.366	-60	-17.27	0.137	-72	0.40	70	7.55
11.0	0.79	36	1.61	1.204	-78	-17.39	0.135	-83	0.45	52	7.27
12.0	0.82	20	0.47	1.055	-94	-17.65	0.131	-94	0.50	35	6.84
13.0	0.84	8	-0.93	0.898	-110	-18.34	0.121	-104	0.54	17	5.72
14.0	0.85	-4	-2.24	0.773	-125	-18.86	0.114	.112	0.59	2	4.77
15.0	0.87	-18	-3.45	0.672	-140	-19.17	0.110	-122	0.63	-8	4.42
16.0	0.88	-31	-4.63	0.587	-153	-19.49	0.106	-131	0.67	-19	3.85
17.0	0.88	-41	-5.81	0.512	-167	-19.74	0.103	.141	0.70	-32	3.03
18.0	0.89	-51	-7.27	0.433	-179	-20.54	0.094	-148	0.74	-41	2.34

ATF-38143 Typical Noise Parameters $V_{DS} = 2V, I_{DS} = 10mA$ Frequency Fmin Gamma Opt Rn/50 Ga GHz dB Mag Ang dB 0.18 0.66 0.17 24.1 0.5 13 0.9 0.19 0.64 22 0.16 21.0 1.0 0.20 0.63 26 0.15 20.4 1.5 0.23 0.60 43 0.14 17.9 1.8 0.25 0.57 60 0.12 17.0 2.0 0.28 0.56 67 0.12 16.1 2.5 0.32 0.54 81 0.10 15.2 3.0 0.39 0.52 98 0.08 13.9 4.0 0.52 0.44 129 0.06 11.9 5.0 0.65 0.44 166 0.04 10.8 6.0 0.75 0.45 -165 0.04 9.6 7.0 0.84 0.48 -135 0.08 8.7 8.0 0.95 0.51 -106 0.16 7.7 9.0 1.10 0.55 -84 0.29 7.0 10.0 1.20 0.56 -65 0.46 6.8

Note:

- Fmin values are based on a set of 16 noise figure measurements made at 16 different impedance using an ATN NP5 test system. From these measurements a true Fmin is calculated.. Refer to the noise parameter application section for more information.
- 4. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.

PRELIMINARY DATA

ATF-38143 Typical	Scattering Parameters,	$V_{DS} = 2V, I_{DS} = 20mA$
-------------------	------------------------	------------------------------

Frequency	S	11		s21			s12		s	22	MSG/MAG
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	dB
0.5	0.96	-33	19.50	9.436	155	-28.87	0.036	71	0.39	-33	24.18
0.8	0.91	-53	18.94	8.850	141	-25.19	0.055	60	0.37	-50	22.07
1.0	0.88	-65	18.51	8.425	132	-23.74	0.065	54	0.35	-63	21.13
1.5	0.79	-93	17.23	7.269	113	-21.41	0.085	41	0.31	-90	19.32
1.8	0.75	-109	16.41	6.616	103	-20.63	0.093	34	0.29	-106	18.52
2.0	0.73	-119	15.88	6.220	97	-20.26	0.097	30	0.29	-116	18.07
2.5	0.68	-140	14.52	5.321	83	-19.58	0.105	21	0.27	-139	17.05
3.0	0.66	-159	13.26	4.604	70	-19.09	0.111	14	0.27	-157	16.18
4.0	0.64	172	11.16	3.616	49	-18.49	0.119	2	0.28	174	14.83
5.0	0.64	147	9.52	2.992	30	-17.99	0.126	-9	0.29	151	13.76
6.0	0.66	124	8.12	2.548	11	-17.52	0.133	-20	0.31	129	12.82
7.0	0.68	103	6.77	2.179	-8	-17.33	0.136	-32	0.34	107	11.08
8.0	0.71	83	5.41	1.864	-25	-17.39	0.135	-43	0.37	87	9.34
9.0	0.73	65	4.25	1.632	-41	-17.27	0.137	-53	0.40	73	8.33
10.0	0.76	50	3.39	1.478	-57	-16.95	0.142	-63	0.44	61	7.91
11.0	0.80	34	2.27	1.299	-74	-16.89	0.143	-76	0.50	44	7.63
12.0	0.83	18	1.11	1.136	-90	-17.14	0.139	-87	0.55	28	7.20
13.0	0.85	6	-0.26	0.971	-106	-17.72	0,130	-98	0.58	11	6.20
14.0	0.86	-5	-1.51	0.840	-120	-18.13	0.124	-107	0.62	-4	5.32
15.0	0.88	-19	-2.69	0.734	-134	-18.42	0.120	-118	0.67	-13	5.01
16.0	0.89	-32	-3.80	0.646	-147	-18.79	0.115	-127	0.69	-24	4.34
17.0	0.89	-42	-4.91	0.568	-161	-19.02	0.112	-138	0.71	-36	3.57
18.0	0.90	-52	-6.29	0.485	-173	-19.83	0.102	-146	0.74	-46	2.94

ATF-38143 Typical Noise Parameters

$V_{DS} = 2V, I_{DS}$	$I_{\rm DS} = 2V, I_{\rm DS} = 20$ mA								
Frequency	Fmin	Gamn	na Opt	Rn/50	Ga				
GHz	dB	Mag	Ang		dB				
0.5	0.15	0.71	13	0.13	24.8				
0.9	0.16	0.68	22	0.12	21.4				
1.0	0.16	0.66	26	0.12	21.0				
1.5	0.18	0.60	43	0.09	19.0				
1.8	0.20	0.55	55	0.09	18.0				
2.0	0.22	0.51	68	0.09	16.9				
2.5	0.28	0.48	82	0.08	15.5				
3.0	0.33	0.46	100	0.06	14.7				
4.0	0.45	0.37	133	0.05	12.6				
5.0	0.56	0.39	172	0.04	11.4				
6.0	0.65	0.40	-159	0.04	10.2				
7.0	0.72	0.44	-129	0.08	9.3				
8.0	0.82	0.48	-100	0.15	8.3				
9.0	0.90	0.52	-79	0.26	7.5				
10.0	1.00	0.60	-61	0.40	7.3				

Note:

- 5. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedance using an ATN NP5 test system. From these measurements a true Fmin is calculated.. Refer to the noise parameter application section for more information.
- 6. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.

PRELIMINARY DATA

Noise Parameter Applications Information

Fmin values at 2GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedance using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50Ω , to an impedance represented by the reflection coefficient Γ_0 . The designer must design a matching network that will present Γ_0 to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with Γ_0 . If the reflection coefficient of the matching network is other than Γ_0 , then the noise figure of the device will be greater than Fmin based on the following equation.

NF =
$$F_{min}$$
 + $\frac{4 Rn}{Zo}$ $\frac{|Gs - Go|^2}{(|1 + Go|^2)(1 - |Gs|^2)}$

Where Rn/Zo is the normalized noise resistance, Γ_0 is the optimum reflection coefficient required to produce Fmin and Γ s is the reflection coefficient of the source impedance actually presented to the device.

The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Fo is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γ_o as compared to narrower gate width devices. Typically for FETs, the higher Γ_o usually infers that an impedance much higher than 50 Ω is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air-wound coils (Q>100)are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using multi-layer molded inductors with Qs in the 30 to 50 range results in additional loss over the air-wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Hewlett Packard Application 1085.

9

PRELIMINARY DATA

ATF-38143 SC70 4 Leads, High Frequency Nonlinear Model Optimized for 0.5 - 10.0GHz

_				
		ATF-38	143 D	IE MODEL
	Statz_Model MESFETM1 NFET=yes PFET=no Vto= -0.75 Beta= 0.3 Lambda= 0.07 Alpha= 4 B= 0.8 Tnom= 27 Idstc= Vbi= 0.7 Tau= Betatce= Delta1= Delta2= Gscap= 3	Cgs=0.997 pF Gdcap=3 Cgd=0.176 pF Rgd=0.195 Tqm= Vmax= Fc= Rd=0.084 Rg=0.264 Rs=0.054 Ld=0.0014 nH Lg=0.0883 nH Ls=0.001 nH Cds=0.0911 pF Crf=0.0936	Rc=137 $Gsfwd=1$ $Gsrev=0$ $Gdfwd=1$ $Gdrev=0$ $Vjr=1$ $Is=1 nA$ $Ir=1 nA$ $Imax=0.1$ $Xti=$ $N=$ $Eg=$ $Vbr=$ $Vtotc=$ $Rin=$	T a umd I = n o F n c = 1 E 6 R=0.17 C=0.2 P=1 wVg f w d= wBvgs= wBvgs= wBvgd= wBvds= wI d smax= wPmax= A I I P a r ams=

PRELIMINARY DATA

Package Dimensions

Outline 43 SOT-343 (SC70 4 lead)

DIMENSIONS ARE IN MILLIMETERS (INCHES)

Tape Dimensions For Outline 4T

PRELIMINARY DATA

This preliminary data is provided to assist you in the evaluation of product(s) currently under development and targeted for market release shortly. Until Hewlett-Packard releases this product for general sales, HP reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at any time.

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A0 B0 K0 P D1	$\begin{array}{c} 2.24 \pm 0.10 \\ 2.34 \pm 0.10 \\ 1.22 \pm 0.10 \\ 4.00 \pm 0.10 \\ 1.00 \pm 0.25 \end{array}$	$\begin{array}{c} 0.088 \pm 0.004 \\ 0.092 \pm 0.004 \\ 0.048 \pm 0.004 \\ 0.157 \pm 0.004 \\ 0.039 \pm 0.010 \end{array}$
PERFORATION	DIAMETER PITCH POSITION	D Po E	$\begin{array}{c} 1.55 \pm 0.05 \\ 4.00 \pm 0.10 \\ 1.75 \pm 0.10 \end{array}$	$\begin{array}{c} 0.061 \pm 0.002 \\ 0.157 \pm 0.004 \\ 0.069 \pm 0.004 \end{array}$
CARRIER TAPE	WIDTH THICKNESS	W t ₁	$\begin{array}{c} 8.00 \pm 0.30 \\ 0.255 \pm 0.013 \end{array}$	$\begin{array}{c} 0.315 \pm 0.012 \\ 0.010 \pm 0.0005 \end{array}$
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P2	$\begin{array}{c} 3.50 \pm 0.05 \\ 2.00 \pm 0.05 \end{array}$	0.138 ± 0.002 0.079 ± 0.002

Part Number Ordering Information

Part Number	No. of Devices	Container
ATF-38143-TR1	3000	7" Reel
ATF-38143-TR2	10000	13" Reel
ATF-38143-BLK	100	Antistatic bag

PRELIMINARY DATA