

Zero Bias Beamlead Detector Diode

Technical Data

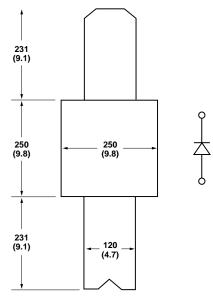
HSCH-9161

Features

- Low Junction Capacitance
- Lower Temperature Coefficient than Silicon
- Durable Construction— Typical 6 gram beamlead strength
- Operation to 110 GHz

Description

Hewlett-Packard's HSCH-9161 detector diode is a beamlead, GaAs device fabricated using the modified barrier integrated diode (MBID) process^[1]. This diode is designed for zero bias detecting applications at frequencies through 110 GHz. It can be mounted in ceramic microstrip (MIC), finline and coplanar waveguide circuits.


Applications

At room temperature and frequencies under 10 GHz, the silicon zero bias Schottky detectors HSMS-0005 and HSMS-2850 offer comparable performance. However, the HSCH-9161 yields virtually flat detection sensitivity from 10 to 30 GHz with good performance from 30 to 110 GHz. In a wideband matched detector. in which a shunt 50 Ω resistor is used in front of the diode, voltage sensitivity (γ) is calculated to be $1 \text{ m V/}\mu\text{W}$. Where a high-Q reactive impedance matching network is substituted for the shunt 50 Ω resistor, values of γ approaching $25 \text{ mV/}\mu\text{W}$ can be expected.

In applications below 10 GHz where DC bias is not available and where temperature sensitivity is a design consideration, the HSCH-9161 offers superior stability when compared to silicon zero bias Schottky diodes.

Bonding and Handling

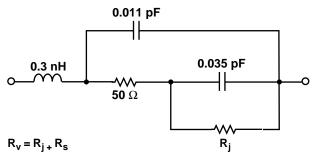
For more detailed information, see HP Application Note 999, "GaAs MMIC Assembly and Handling Guidelines."

ALL DIMENSIONS IN MICRONS.

^[1] The diode structure and process are covered by U.S. Patent No. 4,839,709 issued to Mark Zurakowski on June 13, 1989, and assigned to Hewlett-Packard.

HSCH-9161 Absolute Maximum Ratings, $T_A = 25^{\circ}C$

Symbol	Parameters/Conditions	Units	Min.	Тур.	Max.
T _{op}	Operating Temp. Range	°C	-65		175
T _{stg}	Storage Temp. Range	°C	-65		200
PB	Burnout Power	dBm		20	


Assembly Techniques

Thermocompression bonding is recommended. Welding or conductive epoxy may also be used. For additional information see Application Note 979, "The Handling and Bonding of Beam Lead Devices Made Easy," or Application Note 992, "Beam Lead Attachment Methods," or Application Note 993, "Beam Lead Device Bonding to Soft Substrates."

DC Specifications/Physical Properties, $T_A = 25^{\circ}C$ Symbol Parameters and Test Conditions Units Min. Typ


Symbol	Parameters and Test Conditions	Units	Min.	Typ.	Max.
Cj	Junction Capacitance Test Conditions: f = 1 GHz	pF		.035	
R _V	Video Resistance Test Conditions: Zero Bias	kΩ	1.8		7.5
γ	Voltage Sensitivity Test Conditions: Zero Bias, 10 GHz, shunt 50 Ω input matching resistor	mV/μW	0.5		
_	Beamlead Strength	grams	3		

Small Signal Linear Model

SPICE Parameters

Because of the high leakage of this diode under reverse bias, it must be modelled as an anti-parallel pair.

D1 represents the characteristic of the HSCH-9161 under forward bias and D2 (in the forward direction) gives the V-I curve of the HSCH-9161 under reverse bias.

Parameter	Units	D1	D2
B _v	V	10	10
C _{JO}	pF	0.030	0.030
E _G	eV	1.42	1.42
I _{BV}	Α	10E-12	10E-12
Is	Α	12x10E-6	84 x 10E-6
N		1.2	40.0
R _s	Ω	50	10
$P_{\rm B}\left({ m V_{J}} ight)$	V	0.26	0.26
P _T (XTI)		2	2
М		0.5	0.5

HSCH-9161 Typical Performance

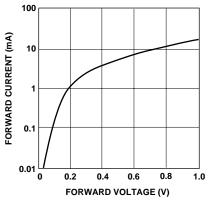


Figure 1. Forward Current vs. Forward Voltage.

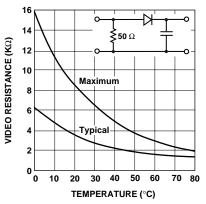


Figure 2. Typical Variation of Video Resistance vs. Temperature.

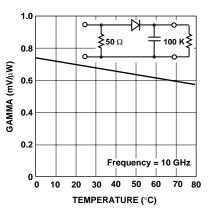


Figure 3. Calculated Variation of Voltage Sensitivity vs. Temperature.